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A matrix product system chooses a special path in the phase diagram to undergo a quantum phase transition
�QPT� and shows different behaviors compared with a traditional QPT, such as the symmetry behavior of some
physical observables described in this paper. An equation is established, which �i� helps one to understand the
special behaviors of a matrix product state �MPS�-QPTs, and �ii� can be used to detect the QPT point of a MPS,
much simpler than usual procedures of calculating the transfer matrix or density matrix of the system. The
equation acts as a selection rule for the path of the MPS-QPT and is believed to be the essence of distinguish-
ing a MPS-QPT from a traditional QPT. Furthermore, the discontinuity of the derivative of an observable is
found to be connected directly to the turning point in the path of the MPS, but not the phase boundary point
in the phase diagram, though the two are in accordance with each other in many cases.
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I. INTRODUCTION

In systems with a large number of interacting particles,
many complex and interesting phenomena arise, among
which quantum phase transitions �QPTs� occupy a distin-
guished position. For example, a magnetic system may show
a QPT when an appropriate magnetic field is imposed. In the
vicinity of the transition point, the derivative of the observ-
able with respect to the external parameter is discontinuous
and the correlation length is divergent, which are considered
to be indicators of a traditional QPT.1

Recently, QPTs in quantum spin chain systems character-
ized by local Hamiltonians with matrix product ground states
are investigated by many groups.2–7 Suppose one has a
closed spin chain with N sites and let d be the dimension of
the Hilbert space � at each site. Then unnormalized matrix
product states �MPSs� are defined as

���g�� = �
i1,. . .,iN=1

d

tr�Ai1
, . . . ,AiN

��i1, . . . ,iN� ,

where the Aj’s, with j=1, . . . ,d, are D�D matrices; D is the
dimension of the bonds in the so-called valence bond
picture.8–10 We focus on D=2 in this paper. We assume that
the matrices AjªAj�g� depend on one or more parameters
generically denoted by g. In addition, we only consider trans-
lationally invariant states, by taking the matrices to be site
independent. For a given MPS, one can always construct a
parent Hamiltonian which guarantees the MPS be its ground
state.2 One can use transfer matrix method2,5 to calculate the
density matrix of the system, then all physical observables
can be calculated. With these observables, two schemes are
used to detect a MPS-QPT: one is to consider the analyticity
of the derivative of an observable �i.e., average magnetiza-
tion, measures of quantum entanglement,4,5,11 two-particle
functions� and the other concerns with the divergence of the
correlation length or the vanishing of the fidelity.3,7,12

It has been pointed out that a MPS-QPT differs from a
traditional QPT in some aspects.2 For example, the ground-
state energy remains analytic in a MPS-QPT while shows a
singular point in a traditional QPT. In addition to these dif-

ferences, we find an interesting phenomenon. In a traditional
phase transition, observables are generally not symmetrical
with respect to the critical point g=gc �see Fig. 1�a� �bot-
tom��. A typical example was reported in our recent
publication13 investigating the QPTs of spin-1

2 diamond mod-
els, where neither the magnetization nor the quantum en-
tanglement of the system shows any symmetry behavior in
the vicinity of QPT points. In contrast, one can find that in
many MPSs some quantities are symmetrical with respect to
the MPS-QPT point gc. For spin ladders with SO�2� symme-
try �rotation around the z axis in spin space� and three Z2
symmetries �spin flip, parity, and leg exchange�,5 the corre-
lation function Gz is found to be symmetrical with respect to
gc and similar results can be found in the q-deformed valence
bond solid �VBS� model.14 For XYZ spin chains with matrix
product ground state,6 the average magnetization in the x
direction is symmetrical with respect to gc. In spin liquid
models,7 the single-site von Neumann entropy and the two-
site entropy are symmetrical with respect to gc.

As the symmetry behavior is observed in many matrix
product systems, the intention of this paper is to investigate
the intrinsic origin of this phenomenon. We find that this
symmetry of a MPS, as well as the particular analyticity of
the ground-state energy mentioned above, can be well under-
stood by considering the special path along which a MPS
evolves in the phase diagram.15 We characterize the path by
an equation called the symmetry equation in this paper. The
equation can be used to judge whether a MPS has such a
symmetry point or not and identify its location if it has. We
find that the symmetry point is usually the singular point of a
physical observable, thus the equation can help us to detect
the MPS-QPT point. Examples show that this method is
much simpler than usual procedures of calculating the trans-
fer matrix or density matrix of the system. In addition, the
MPS-QPT point is found to be connected directly to the turn-
ing point in the path of the MPS, but not necessarily the
phase boundary point in the phase diagram; thus, there may
be no traditional phase transition at all in some MPS-QPTs.
Finally, we will discuss a complex case, that is, a physical
observable can show a global symmetry point and several
local symmetry points in some systems.
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The structure of this paper is as follows: in Sec. II we
propose a symmetry equation to explain the symmetry be-
havior of MPSs. In Sec. III we investigate in detail two rep-
resentative examples with our theory and draw correspond-
ing paths in the phase diagram. In Sec. IV the relationship
between the singularity of a physical observable and the
phase boundary point in the phase diagram is discussed. We
study multiple-symmetry-point MPSs in Sec. V and a con-
clusion is given in Sec. VI.

II. SYMMETRY EQUATION FOR MATRIX PRODUCT
STATES

Suppose a MPS satisfies the following equation:

���g0 − ��� = R · ���g0 + ���, for any � , �1�

with R as a unitary operator, then it is easy to prove that for
any operator that commutes with R, its average value would

be symmetrical with respect to g0. In addition, as measures
of quantum entanglement keep unchanged under a unitary
transformation, they would also be symmetrical with respect
to g0. We will call g0 the symmetry point of the MPS in this
paper. In fact, to the best of our knowledge, all the MPSs that
show the symmetry property satisfy this equation; thus, we
think the equation has captured the essence of this phenom-
enon. We will call Eq. �1� the symmetry equation in this
paper.

Suppose an operator F commutes with R, with its average
value F�g� symmetrical with respect to g0. In the vicinity of
g0, the left and right derivatives of F�g� are the opposite of
each other: � �F�g�

�g �g→g0
− =−� �F�g�

�g �g→g0
+, then �F�g�

�g is discontinu-

ous at g=g0 if only � �F�g�
�g �g→g0

−�0.16 That explains why the
symmetry point is just the singular point in many systems.
For concise representations, we will not distinguish between
the symmetry point and singular point in the following.

A sufficient but not necessary condition of the symmetry
equation can be expressed as follows: point g=g0 would be a
symmetry point of the MPS, if there exist an invertible trans-
form matrix S and a unitary matrix R satisfying

SAi�g0 − ��S−1 = �
j

RijAj�g0 + ��, with i, j = 1, . . . ,d .

�2�

The unitary operator R of a N-particle system can be ex-
pressed as R=R�N. It should be mentioned that Eq. �2� can
be generalized easily to dimerized MPSs.17 In addition, Eq.
�2� works very well in most cases, while for a three-body
interaction MPS �Ref. 2� and a q-deformed spin-1 MPS,14

the symmetry points cannot be solved by Eq. �2�. Fortu-
nately, by figuring out the wave functions of finite-N chains,
one can easily check that Eq. �1� still holds with R diagonal
and its diagonal elements �1. Note that Eq. �2� is not a
necessary condition of Eq. �1�.

III. PATHS OF MPS-QPTS

In this section, we investigate two MPS examples, with
R= I and R� I, respectively, and map out the corresponding
paths in phase diagrams. One will find that the different be-
haviors between MPS-QPTs and traditional QPTs can be
well understood by considering the paths of the states. We
will use the notation I for the identity matrix, �i�i=x ,y ,z� for
the Pauli matrices and �� the Pauli raising and lowering
operators in the following paper.

Example 1. The simplest case is R= I. We consider a
spin-1 MPS �A0 ,A+1 ,A−1	 with A0= I, A+1=−g�+, and A−1
=g�−, where 0 and �1 are the three eigenvalues of the
spin-1 operator Sz.

4 Its parent Hamiltonian has been used to
describe a large class of antiferromagnetic spin-1 chains,18

with the excitation spectrum gapped �the Haldane phase� for
g�0 and gapless at g=0. In addition, the string order pa-
rameter has a nonzero expectation value for g�0 and be-
comes zero at g=0, and the correlation length is found to be
ln��1+g2� / �1−g2��, which diverges at g=0. Thus, gc=0 is
indeed the critical point of the model. In addition, the longi-
tudinal two-site correlation function is symmetrical with

FIG. 1. �Color online� Phase diagram �top� and physical observ-
ables �bottom� for several models. Two phases are marked as � and
	 with the boundary indicated by the circle. F and Q denote some
physical observables. �a� In a traditional QPT, the system crosses
the boundary through a normal path, then a singular point would be
observed and usually no symmetry would be observed. �b1� For a
trivial MPS with R= I, the states ���g0−��� and ���g0+��� at the
two sides of the symmetry point g0 correspond to the same point in
the phase diagram. �c1� For R� I, the system strides over two
phases through a special path, where its path in �� can be imagined
as the “rotation” �corresponding to the unitary transformation R in
the symmetry equation� of its path in �. �b2� A trivial model �with
R= I� is constructed to show that a �trivial� symmetry point can
deviate from phase boundary due to some mathematical reasons. By
rotating �b2�, we get a intuitive image that in a nontrivial MPS
�with R� I� a singularity may be observed at any turning point in
the path of the MPS, shown in �c2�. �b3� We use another trivial
model to illustrate that multiple symmetry points may be observed
due to mathematical reasons. By rotating �b3�, one can easily imag-
ine the path of the complex q-deformed spin-1 MPS, which is a
nontrivial model showing three symmetry points.

SUN et al. PHYSICAL REVIEW B 80, 094414 �2009�

094414-2



respect to gc=0. In order to understand this symmetry
behavior, we examine our conjecture ���g0−���=R · ���g0
+��� by solving Eq. �2�. We find R= I, S12=S21=0, and
S11 /S22= �g0−�� / �g0+��= �g0+�� / �g0−��. As it holds for any
�, we get g0=0,19 which is just the critical point gc of the
system. The invertible transform matrix is found to be S
= � −1 0

0 1 �. As ���g0−���= ���g0+���, the physical picture of the
QPT can be illustrated as follows �see Fig. 1�b1� �top��. For
simplicity, suppose the corresponding phase space involves
two phases denoted as � and 	. The system resides in phase

� when g
g0 and evolves along a path AĈ, which is com-
prised of all the quantum states a MPS describes, as g in-
creases. When g→g0

−, the system approaches point C, which
is the very boundary point between phase � and phase 	, and
it explains why the correlation length diverges at g=g0. Be-
cause of the symmetry of ��g�, when g�g0 the system

evolves backward into phase � along the same path CÂ.
During the evolution A→C→A, it is obvious that all the
observables should be symmetrical with respect to g=g0.

Example 2. We consider a model with R� I. The MPS
matrices are given by A↑= � 1 g

1 1 � and A↓= � 1 −g
−1 1 �, with ↑ and ↓

related to the two eigenstates of the spin-1
2 operator Sz.

6 The
state has a very interesting property: all the pairs of spins are
equally entangled with each other, making it a good candi-
date for engineering long-range entanglement in experimen-
tally realizable arrays of qubits or spin systems. The magne-
tization in the x direction is symmetrical with respect to the
critical point gc=g0=0. The symmetry point, which is also
the QPT point of the system, can be identified by solving Eq.
�2�. We find choosing two different matrix product matrices
A←ª �A↑+A↓� and A→ª �A↑−A↓�, which correspond to the
two eigenstates of the spin-1

2 operator Sx, will simplify the
calculations. The solution is found to be g0=0 and R=�x.
Consider its parent Hamiltonian6

H�g� = − �
i=1

N
1

2
�1 − g�2�y,i�y,i+1 +

1

2
�1 + g�2�z,i�z,i+1

+ �1 − g2��x,i.

It is apparent that H�g0−�� and H�g0+�� with g0=0 describe
the same quantum system in different coordinates. They can
be transformed into each other by local � /2 rotations of
spins around the x axis ��z,i��y,i�, which is consistent with
the symmetry equation �R=�x

�N�. As �R ,Sx�=0, the magne-
tization in the x direction is symmetrical.

For a general unitary matrix R, wave functions at the two
sides of the symmetry point differ from each other by a uni-
tary transformation and it seems as if they are just two ob-
servations for the same physical object in two different co-
ordinate systems. One can see that in the phase diagram only
paths satisfying the symmetry equation can be taken by the
MPS to show a QPT, which is quite different from a tradi-
tional QPT. For a three-body interaction model,2 it has been
found that a phase transition at the triple point in the phase
diagram can be described by a MPS with A1= � 0 0

1 1 � and A2

= � 1 g
0 0 �, thus Wolf et al. conclude that MPS-QPT can occur at

the triple point of conventional QPT. One can check that this
model satisfies the symmetry Eq. �1� with R being a diagonal

matrix with diagonal elements �1. We argue that the exis-
tence of a triple point in the phase diagram is neither a suf-
ficient nor a necessary condition to show a MPS-QPT and
the essence of a MPS-QPT is the existence of a special path
connecting the two phases. Moreover, with the symmetry
equation, one will find it is easy to understand the different
analysis properties of the energy between a traditional QPT
and a MPS-QPT. We consider a system with two phases
shown in Fig. 1. First, by choosing appropriate energy base
point, one can always scale the energy in phase � to be zero,
with the energy in phase 	 generally nonzero. When the
system crosses the phase boundary through a normal path,
for example, a path perpendicular to the boundary, a singu-
larity is prone to be observed, and a traditional QPT happens
�see Fig. 1�a��. For a MPS-QPT, there are two cases. One is
the system just reaches the phase boundary and goes back-
ward into phase � and never crosses into other phases, then
the singularity of the energy cannot be observed �see Fig.
1�b1��. The other is there exists a special path connecting the
two phases �see Fig. 1�c1��, which guarantees the system be
able to cross the boundary with energy invariant.

IV. TURNING POINT AND PHASE BOUNDARY POINT

In each example in Sec. III, the MPS-QPT happens at the
phase boundary point C. In this section, we will give a clear
physical picture that a MPS-QPT can derive from the phase
boundary.

First, we consider a parametrization procedure gªg�x�
=x2+1 to simulate the path AĈ of the MPS in example 1. For
mathematical reasons, it produces a nonunique parametriza-
tion of the phase diagram; thus, the resulting MPS seems to
be trivial, however, we will show that this trivial model will
be helpful to draw an intuitive picture of the next nontrivial
MPS-QPT �in example 3�. The new path is shown in Fig.
1�b2� �top�. By solving Eq. �2� the symmetry point is found

to be x0=0 corresponding to a phase point B in path AĈ. In
addition, as g=x2+1�1, the boundary point on the end of

the path AĈ cannot be reached any more. Then, as x varies,
the ground state of the system moves from A to B when x
→x0 and then goes backward to A, with B the turning point
in the path, and never reaches the boundary point C. One can
see that the MPS shows a �trivial� symmetry point which has
no association with the phase boundary point C at all. This
kind of symmetry point is more likely to be observed in a
MPS with a small D. Because, when D is small, the matrices
�Aj	 can describe only a very small section in phase space,
thus its path leading to the critical point could be cut off
easily in different parametrization procedures. See the fol-
lowing nontrivial model with R� I.

Example 3. Consider a spin ladder model which has rota-
tional symmetry in the x-y plane of spin space.5 In each rung
of the ladder we associate four matrices As, At+1

, At0
, and

At−1
, where �s� is the single state and �t� with =+1,0 ,−1

are the triplet states of the rung. �Aj	 are given by As=xI,
At+1

=g�+, At0
=y�z, and At−1

=�−. The longitudinal correla-
tion function, Gx=−g2�x2+y2− �g��r−2 / �x2+y2+ �g��r, is sym-
metrical with respect to the three axes, which can also be
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identified easily by solving the symmetry equation. The cor-
responding correlation length 1 / ln� x2+y2+�g�

x2+y2−�g� � diverges merely
at gc=0. Thus, for fixed x and y, there is only one path,
characterized by parameter g, leading to the boundary point
gc, and the path may be cut off when more restrictions are
imposed on �Aj	. For example, to construct a spin-1

2 ladder
with full rotation symmetry,5 one has to fix g=−1 and y=1,
then the system never reaches the boundary point. However,
the one-rung entropy �S=log2�x2+3�− �x2 log2�x2� / �x2+3���
still shows a symmetry point x0=0. Furthermore, though
� dS
dx �x→x0

=0, we find that the second-order derivative d2S /dx2

diverges at the symmetry point. Thus, the MPS shows a sin-
gularity which has no correlation to the phase boundary
point. The path of this model is shown in Fig. 1�c2�, which
can be figured out easily by just “rotating” the path in Fig.
1�b2�. We should point out that similar analyticity of the
derivatives is also reported in the dimerized spin liquid
models,7,16 where at the phase boundary point, the second-
order derivative of the entropy diverges.

V. MULTIPLE SYMMETRY POINTS

For each model mentioned above, g0 is the only symmetry
point of the state. However, for certain MPS one may find a
physical observable has several symmetry points. An image
is drawn in Fig. 1�b3� �bottom�, in which one global symme-
try point and two local symmetry points are shown.

Consider parametrization procedure gªg�x�=x2−1 to

simulate the path AĈ in example 1. Though it is another
trivial model, we find that it can help to understand the mul-
tiple symmetry point in a q-deformed spin-1 MPS. The cor-
responding new path is drawn in Fig. 1�b3� �top�. The QPT
point C can be reached twice as x varies �xc= �1� and the
solution of the symmetry equation is found to be x0=0 cor-

responding to point B in the path AĈ. Now as x varies from

certain negative value to xc=−1, the entire path AĈ has been
covered. When x varies from xc=−1 to x0=0, the system
goes from point C to the symmetry point B. Then it moves
from B to the critical point C again when x varies from x0
=0 to xc=+1. Finally, it moves to its starting point A from
the critical point C when x increases from +1. One can see

that during the evolution AĈ→B→CÂ, there are three sym-
metry points: one is the global symmetry point x0=0 and the
other two are the local symmetry points xc= �1, which cor-
respond to the three turning points in the path. Though the
multiple symmetry point in this trivial MPS is due to math-
ematical reasons, one can check that the ground state of a
q-deformed spin-1 chain14 evolves similarly to Fig. 1�b3�,
with R� I, and shows three symmetry points. In order to get
an intuitive image of its path, one just needs to “rotate” the
path in �b3�. In a complex matrix product system, such as a
MPS with a larger dimension D and more free parameters,
the path can be very intricate, then some points in the path
may be crossed many times and more interesting behaviors
may be observed.

VI. CONCLUSION

In summary, a symmetry behavior of MPS-QPTs is ob-
served: certain physical observables are found to be sym-
metrical with respect to the MPS-QPT point. A symmetry
equation is proposed. With the equation, we draw clear
physical pictures of MPS-QPTs, and the symmetry behavior
and the special analyticity of the ground-state energy of a
MPS are explained. Moreover, one can figure out the QPT
point of a MPS by solving the equation, without any require-
ment of calculating the transfer matrix or density matrix of
the system. The equation acts as a selection rule for the path
of a MPS-QPT. Whether there exist other selection rules for
the path of a MPS-QPT needs further investigations. How-
ever, the simplest condition to ensure the system is able to
cross the phase boundary with energy invariant is just the
symmetry equation proposed; that is why the symmetry
equation can be used in many MPS models. Furthermore, the
discontinuity of the derivative of an observable is related
directly to the turning point in the path, rather than the phase
boundary point, though the two are in accordance with each
other in many models.
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